skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nowotarski, Christopher J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells. Significance Statement The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat. 
    more » « less
  2. Abstract Proper prediction of the inflow layer of deep convective storms is critical for understanding their potential updraft properties and likelihood of producing severe weather. In this study, an existing forecast metric known as the effective inflow layer (EIL) is evaluated with an emphasis on its performance for supercell thunderstorms, where both buoyancy and dynamic pressure accelerations are common. A total of 15 idealized simulations with a range of realistic base states are performed. Using an array of passive fluid tracers initialized at various vertical levels, the proportion of simulated updraft core air originating from the EIL is determined. Results suggest that the EIL metric performs well in forecasting peak updraft origin height, particularly for supercell updrafts. Moreover, the EIL metric displays consistent skill across a range of updraft core definitions. The EIL has a tendency to perform better as convective available potential energy, deep-layer shear, and EIL depth are increased in the near-storm environment. Modifications to further constrain the EIL based on the most-unstable parcel height or storm-relative flow may lead to marginal improvements for the most stringent updraft core definitions. Finally, effects of the near-storm environment on low-level and peak updraft forcing and intensity are discussed. 
    more » « less
  3. null (Ed.)
    Abstract In supercell environments, previous authors have shown strong connections between the vertical wind shear magnitude, updraft width, and entrainment. Based on these results, it is hypothesized that the influences of entrainment-driven dilution on buoyancy and maximum updraft vertical velocity w in supercell environments are a predictable function of the vertical wind shear profile. It is also hypothesized that the influences of pressure perturbation forces on maximum updraft w are small because of a nearly complete offset between upward dynamic pressure forces and downward buoyant pressure forces. To address these hypotheses, we derive a formula for the maximum updraft w that incorporates the effects of entrainment-driven dilution on buoyancy but neglects pressure gradient forces. Solutions to this formula are compared with output from previous numerical simulations. This formula substantially improves predictions of maximum updraft w over past CAPE-derived formulas for maximum updraft w , which supports the first hypothesis. Furthermore, integrated vertical accelerations along trajectories show substantial offsets between dynamic and buoyant pressure forces, supporting the second hypothesis. It is argued that the new formula should be used in addition to CAPE-derived measures for w in forecast and research applications when accurate diagnosis of updraft speed is required. 
    more » « less
  4. null (Ed.)
    Abstract The relationship between storm-relative helicity (SRH) and streamwise vorticity ωs is frequently invoked to explain the often robust connections between effective inflow layer (EIL) SRH and various supercell updraft properties. However, the definition of SRH also contains storm-relative (SR) flow, and the separate influences of SR flow and ωs on updraft dynamics are therefore convolved when SRH is used as a diagnostic tool. To clarify this issue, proximity soundings and numerical experiments are used to disentangle the separate influences of EIL SR flow and ωs on supercell updraft characteristics. Our results suggest that the magnitude of EIL ωs has little influence on whether supercellular storm mode occurs. Rather, the transition from nonsupercellular to supercellular storm mode is largely modulated by the magnitude of EIL SR flow. Furthermore, many updraft attributes such as updraft width, maximum vertical velocity, vertical mass flux at all levels, and maximum vertical vorticity at all levels are largely determined by EIL SR flow. For a constant EIL SR flow, storms with large EIL ωs have stronger low-level net rotation and vertical velocities, which affirms previously established connections between ωs and tornadogenesis. EIL ωs also influences storms’ precipitation and cold-pool patterns. Vertical nonlinear dynamic pressure acceleration (NLDPA) is larger at low levels when EIL ωs is large, but differences in NLDPA aloft become uncorrelated with EIL ωs because storms’ midlevel dynamic pressure perturbations are substantially influenced by the tilting of midlevel vorticity. Our results emphasize the importance of considering EIL SR flow in addition to EIL SRH in the research and forecasting of supercell properties. 
    more » « less
  5. This research investigates a hypothesis posed by previous authors, which argues that the helical nature of the flow in supercell updrafts makes them more resistant to entrainment than nonsupercellular updrafts because of the suppressed turbulence in purely helical flows. It was further supposed that this entrainment resistance contributes to the steadiness and longevity of supercell updrafts. A series of idealized large-eddy simulations were run to address this idea, wherein the deep-layer shear and hodograph shape were varied, resulting in supercells in the strongly sheared runs, nonsupercells in the weakly sheared runs, and variations in the percentage of streamwise vorticity in updrafts among runs. Fourier energy spectrum analyses show well-developed inertial subranges in all simulations, which suggests that the percentages of streamwise and crosswise vorticity have little effect on turbulence in convective environments. Additional analyses find little evidence of updraft-scale centrifugally stable flow within updrafts, which has also been hypothesized to limit horizontal mass flux across supercell updrafts. Results suggest that supercells do have smaller fractional entrainment rates than nonsupercells, but these differences are consistent with theoretical dependencies of entrainment on updraft width, and with supercells being wider than nonsupercells. Thus, while supercells do experience reduced fractional entrainment rates and entrainment-driven dilution, this advantage is primarily attributable to increased supercell updraft width relative to ordinary convection, and has little to do with updraft helicity and rotation. 
    more » « less
  6. Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base. 
    more » « less
  7. Abstract Observed supercell updrafts consistently produce the fastest mid- to upper-tropospheric vertical velocities among all modes of convection. Two hypotheses for this feature are investigated. In the dynamic hypothesis, upward, largely rotationally driven pressure gradient accelerations enhance supercell updrafts relative to other forms of convection. In the thermodynamic hypothesis, supercell updrafts have more low-level inflow than ordinary updrafts because of the large vertical wind shear in supercell environments. This large inflow makes supercell updrafts wider than that of ordinary convection and less susceptible to the deleterious effects of entrainment-driven updraft core dilution on buoyancy. These hypotheses are tested using a large suite of idealized supercell simulations, wherein vertical shear, CAPE, and moisture are systematically varied. Consistent with the thermodynamic hypothesis, storms with the largest storm-relative flow have larger inflow, are wider, have larger buoyancy, and have faster updrafts. Analyses of the vertical momentum forcing along trajectories shows that maximum vertical velocities are often enhanced by dynamic pressure accelerations, but this enhancement is accompanied by larger downward buoyant pressure accelerations than in ordinary convection. Integrated buoyancy along parcel paths is therefore a strong constraint on maximum updraft speeds. Thus, through a combination of processes consistent with the dynamic and thermodynamic hypotheses, supercell updrafts are able to realize a larger percentage of CAPE than ordinary updrafts. 
    more » « less
  8. Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026